Flights in a pseudo-chaotic system.
نویسندگان
چکیده
We consider the problem of transport in a one-parameter family of piecewise rotations of the torus, for rotation number approaching 1∕4. This is a zero-entropy system which in this limit exhibits a divided phase space, with island chains immersed in a "pseudo-chaotic" region. We identify a novel mechanism for long-range transport, namely the adiabatic destruction of accelerator-mode islands. This process originates from the approximate translational invariance of the phase space and leads to long flights of linear motion, for a significant measure of initial conditions. We show that the asymptotic probability distribution of the flight lengths is determined by the geometric properties of a partition of the accelerator-mode island associated with the flight. We establish the existence of flights travelling distances of order O(1) in phase space. We provide evidence for the existence of a scattering process that connects flights travelling in opposite directions.
منابع مشابه
Conservative chaotic flow generated via a pseudo-linear system
Analysis of nonlinear autonomous systems has been a popular field of study in recent decades. As an interesting nonlinear behavior, chaotic dynamics has been intensively investigated since Lorenz discovered the first physical evidence of chaos in his famous equations. Although many chaotic systems have been ever reported in the literature, a systematic and qualitative approach for chaos generat...
متن کاملKato's chaos and P-chaos of a coupled lattice system given by Garcia Guirao and Lampart which is related with Belusov-Zhabotinskii reaction
In this article, we further consider the above system. In particular, we give a sufficient condition under which the above system is Kato chaotic for $eta=0$ and a necessary condition for the above system to be Kato chaotic for $eta=0$. Moreover, it is deduced that for $eta=0$, if $Theta$ is P-chaotic then so is this system, where a continuous map $Theta$ from a compact metric space $Z$ to itse...
متن کاملChaotic advection in a two-dimensional flow: L6vy flights and anomalous diffusion
Long-term particle tracking is used to study chaotic transport experimentally in laminar, chaotic, and turbulent flows in an annular tank that rotates sufficiently rapidly to insure two-dimensionality of the flow. For the laminar and chaotic velocity fields, the flow consists of a chain of vortices sandwiched between unbounded jets. In these flow regimes, tracer particles stick for long times t...
متن کاملImage encryption based on chaotic tent map in time and frequency domains
The present paper is aimed at introducing a new algorithm for image encryption using chaotic tent maps and the desired key image. This algorithm consists of two parts, the first of which works in the frequency domain and the second, in the time domain. In the frequency domain, a desired key image is used, and a random number is generated, using the chaotic tent map, in order to change the phase...
متن کاملDigital Signal Transmission with Chaotic Encryption: Design and Evaluation of a FPGA Realization
A discrete-time discrete-value pseudo-chaotic encoder/decoder system is presented. The pseudo-chaotic module is a 3D discrete version of the well-known Lorenz dynamical system. Scaling and biasing transformations as well as natural number arithmetics are employed in order to simplify realizations on a small size Field Programmable Gate Array (FPGA). The encryption ability is improved by using o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2011